
Week 2 - Friday

 What did we talk about last time?
 Process memory
 Multiprogramming

 The kernel runs with full access privileges to everything
 The kernel controls:
 Physical memory
 File system
 I/O devices

 It handles power disruption and people attaching USB devices
 Jobs of the kernel
 Resource manager: Giving access to hardware when needed
 Control program: Handling errors and access violations

 Because it has to work consistently, the kernel doesn't change
much over the years

 The current privilege level (CPL) is a 2-bit value set in x86 CPUs
 Also called a ring
 Ring 3 is user mode
 Ring 0 is kernel mode
 The other two rings aren't used

 When in kernel mode:
 All memory addresses can be accessed
 Some special CPU instructions like halting the CPU or invalidating the

cache can be executed
 Some normal CPU instructions work differently

 Kernel memory exists in the virtual memory of
every process

 The kernel has all the normal memory segments
but also a stack for every process

 User mode code cannot access the kernel space
 Bits are set in the CPU marking space as kernel-only
 Otherwise, malicious code could access everything
 And badly written code could do crazy stuff

Kernel

Stack

Heap

Data

Code

Inaccessible!

 The kernel is loaded during the boot sequence
 CPU executes firmware stored in non-volatile storage
 Older BIOS system
 Or newer UEFI system

 Firmware finds a boot loader, linked to by a special part of a hard drive or SSD
or similar
 GRUB is a common Linux bootloader
 BOOTMGR is for Windows
 BootX is macOS
 Some boot loaders allow dual-booting, the ability to choose which OS to start

 The boot loader finds the file with the kernel in it and calls its main() function
 The kernel takes over and does everything else

 The kernel can be invoked in two different ways
 System call:
 A user mode program wants to do something (like open a file) that requires OS

involvement
 Somewhere in the library, a special trap instruction will ask the kernel to do

something
 Interrupt or exception:
 Interrupts are hardware events that cause the kernel to react, like clicking a

mouse
 Exceptions are software events that notify the kernel of a problem, like a

segmentation fault
 This kind of exception isn't the same as an exception in Java, although the Java

exception can be triggered by an OS exception

 A mode switch is when the ring changes from user mode to
kernel mode

 The user-mode process has no idea this is happening
 After each instruction executes, there's a chance that a mode

switch happened, causing the kernel to handle an interrupt
 One of the challenges of writing OS code is that parts of it

have to be written in a way that doesn't cause exceptions

 User-mode processes can do normal CPU operations
 Add, subtract, multiply, divide
 Test for equality

 They can't do anything outside the CPU on their own
 Read or write hard drive data
 Send messages over the network

 To do these things, processes make system calls, asking the
kernel to do the operation

 In assembly, a special trap instruction triggers a mode switch so
that the kernel will start doing stuff
 The x86 trap instruction is syscall

 The kernel checks to make sure that the process has all the
necessary privileges to do the operation first

 After the system call, the kernel runs the sysret instruction,
returning to user mode

 Many system calls are referred to by the C functions that are
called to run them, even though those functions just do set up
before running the real system call
 For example: write()

 A given OS has a fixed number of system calls
 You can't just add or remove them willy-nilly
 In Linux, each one has a number as well as a name
 The number is what matters, but the name makes it easier to talk about

 C functions that wrap system calls are the same as the system calls
without sys_ in front
 C function write()wraps the sys_write() system call
 Because C is a low-level, systems language, a lot of standard library functions

directly wrap systems calls
 A lot of other functions provide more features but eventually end up

calling system calls
 printf() has all kinds of formatting options, but it ultimately calls write()

 The 64-bit Linux kernel has more than 300 system calls
 These are just a few common ones:

System Call Number Purpose
read 0 Read from a file descriptor
write 1 Write to a file descriptor

nanosleep 35 High-resolution sleep (units in seconds and nanoseconds)
exit 60 Terminate the current process
kill 62 Send a signal to a process
uname 63 Get information about the current kernel

gettimeofday 96 Get the system time in seconds since midnight, January 1, 1970
sysinfo 99 Get information about memory usage and CPU load average
ptrace 101 Trace another process's execution

 You can call a specific system call using the syscall() function
 Its first parameter is the system call number, and the others

depend on the system call
 For example, a basic Hello, World program can call syscall()

with arguments:
 1 System call number for write()
 1 File descriptor for stdout
 message Pointer to "Hello, world\n"
 13 Number of bytes to write

#include <unistd.h>

char *message = "Hello, world\n";

int
main (void)
{
syscall (1, 1, message, 13); // Write message
syscall (60, 0); // Exit process

return 0; // Unreachable
}

 The lives of processes can be modeled with a state diagram,
as in Assignment 2
 A process goes into different states depending on events

 Rough outline:
 When a process is created, there's a new virtual memory instance
 Process code is executed until the halt instruction is reached
 Process is destroyed and resources it was using are released by the

kernel
 All processes have a parent process (except for the init

process)

 Processes are, of course, created when you run a program from
the command line

 However, you can also create processes from within a program,
using calls to special functions

 The fork() function creates a new process that's exactly the
same as the current process

 The exec() function allows you to replace the current process
with another program

 Each process has a unique ID, its process ID or PID
 getpid() returns the PID of the current process
 getppid() returns the PID of the current process's parent process

 The fork() function is pretty crazy!
 When you call it, the process you're inside of keeps running
 And another process spawns at exactly the same point in code
 Both processes have exactly the same memory layout
 The only difference is that fork() returns the child PID for the original process and 0 if

you're the process that just got forked

pid_t child_pid = fork ();

if (child_pid < 0)
printf ("ERROR: No child process created\n");

else if (child_pid == 0)
printf ("Hi, I'm the child!\n");

else
printf ("Parent just gave birth to child %d\n", child_pid);

 Finish process lifecycle
 Files

 Finish Assignment 1
 Due tonight by midnight!

 Start on Assignment 2
 Look over Project 1
 Read section 2.6

	COMP 3400
	Last time
	Questions?
	Assignment 1
	Assignment 2
	Kernel
	Kernel
	x86 operating mode
	Kernel memory structure
	Booting
	Kernel invocation
	Mode switches
	System Calls
	System calls
	How system calls work
	Organization of system calls
	Common system calls
	Using syscall()
	Hello, world with system calls in C
	Process Life Cycle
	Creating processes
	Creating processes in code
	Using fork()
	Upcoming
	Next time…
	Reminders

